ИСТОРИЯ НАУКИ

Самарская Лука. 2007. – Т. 16, № 3(21). – С. 581-584.

© 2007 Г.С. Розенберг* НЕСКОЛЬКО СЛОВ ОБ ИНДЕКСЕ РАЗНООБРАЗИЯ СИМПСОНА

Розенберг Г.С. НЕСКОЛЬКО СЛОВ ОБ ИНДЕКСЕ РАЗНООБРАЗИЯ СИМПСОНА

В статье кратко описана история создания индекса разнообразия и его особенности при исследовании биоразнообразия.

Ключевые слова: выборка, тип распределения, индекс разнообразия.

Rozenberg G.S. SOME WORDS ABOUT THE SIMPSON'S DIVERSITY INDEX

The history of index's making and its peculiarities by studying of biodiversity was described in the article.

Key words: selection, type of a distribution, diversity index.

Понятие «биологическое разнообразие» за сравнительно короткий отрезок времени получило расширенное и многоуровневое толкование (см.: Шитиков, Розенберг, 2005). Собственно его биологический смысл раскрывается через представления о внутривидовом, видовом и надвидовом (ценотическом) разнообразии жизни. В последнее время, в добавление к этому, стали говорить об экосистемном и ландшафтном разнообразии как объектах изучения и охраны. Традиционные положения биогеографической науки также позволяют трактовать ее как науку о географических закономерностях формирования биоразнообразия. Когда на Конференции ООН по окружающей среде и развитию (Рио-де-Жанейро, 1992 г.) была принята "Конвенция о биологическом разнообразии" (Convention.., 1992), к которой присоединилось большинство стран на планете, сложнейшая и многообразнейшая проблеме биоразнообразия приобрела еще и политическое звучание. Наконец, следует указать и на в какой-то степени эпатажную статью А.М. Гилярова (1996), в которой проблема изучения и сохранения биоразнообразия трактуется в финансовом аспекте в терминах академика Л.В. Арцимовича: «Наука – лучший способ удовлетворения личного любопытства за государственный счет».

Само словосочетание «биологическое разнообразие» впервые, повидимому, применил Г. Бэйтс в 1892 г. в работе "Натуралист на Амазонке" (Лебедева и др., 1999), когда описывал свои впечатления от встречи около 700 разных видов бабочек за время часовой экскурсии. Однако основные научные концепции биоразнообразия были сформулированы лишь во второй половине XX века – Р. Уиттекер (Whittaker, 1972; Уиттекер, 1980) структурировал уровни экосистемного разнообразия и исследовал зависимости биоразнообразия от факторов окружающей среды. А вот попытки

_

^{*} Институт экологии Волжского бассейна РАН, г. Тольятти.

количественной оценки биоразнообразия предпринимались еще ранее. И среди этих показателей не последнее место занимает индекс разнообразия Симпсона (он же — индекс Херфиндаля—Хиршмана [HHI — Herfindal-Hirshman Index¹], который, начиная с 1982 г., служит основным ориентиром при осуществлении антимонопольной политики в США; он же [с точностью до масштаба] — индекс лексического разнообразия [TTR — Туре То-ken Ratio], предложенный Дж. Юлом [Yule, 1938] для оценки словарного запаса в математической лингвистике; он же — предложенный итальянским статистиком и экономистом К. Джини коэффициент, дающий алгебраическую интерпретацию кривой Лоренца [Gini, 1921]):

$$D = \sum_{i=1}^{Z} \left\lceil \frac{n_i(n_i - 1)}{N(N - 1)} \right\rceil ,$$

где n_i – число особей в группе i (всего Z групп; $\Sigma n_i = N$), N – объем выборки.

В этой форме записи можно принять во внимание, что знаменатель N(N-1)/2 означает число всех связей между парами особей независимо от их принадлежности к определенной группе, а числитель n(n-1)/2 — число возможных взаимодействий между парами особей одной группы. Тогда глубинный смысл индекса Симпсона можно объяснить (Алимов, 2000), как отношение числа степеней свободы внутривидовых взаимодействий к общему числу степеней свободы внутренних элементов экосистемы, обеспечивающих ее единство и функционирование. Другие авторы (в т.ч. и сам Симпсон — см. далее перевод его статьи; География и мониторинг.., 2002] приписывают этому индексу оценку вероятности принадлежности к разным группам любых двух особей, случайно отобранных из неопределенно большого сообщества. По мере увеличения D выравненность объема групп уменьшается. Поэтому индекс Симпсона часто используют в форме (1 - D). Эта величина варьирует от 0 до 1 и носит название «вероятность межвидовых встреч» (Pielou, 1972).

Как и для любой другой статистики «типа *дисперсии*», значение индекса Симпсона практически полностью зависит от удельного объема 1-2 наиболее обильных видов, так как при возведении в квадрат малых долей $p_i = n_i/N$ получаются очень малые величины. Поскольку D к тому же и слабо зависит от числа групп Z, то следует признать (География и мониторинг.., 2002], что индекс Симпсона, в целом, мало пригоден для оценки биоразнообразия или видового богатства, но является весьма чувствительным индикатором доминирования одного или нескольких видов. Заметим, что статистический разброс удельных объемов групп $p_1, p_2, ..., p_Z$ может быть оценен с использованием известной в теории вероятности формулы:

¹ Orris Clemens Herfindahl (1918-1972) — американский экономист, Albert Otto Hirschman (г.р. 1915) — немецкий экономист.

$$D = \sum_{i=1}^{Z} p_i^2 = Z\sigma^2 + 1/Z ,$$

где σ^2 – мера дисперсии.

Следует упомянуть еще один «клон» индекса Симпсона — «индекс полидоминантности» (Williams, 1964):

$$D^{-1} = 1/D = \sum_{i=1}^{Z} 1/p_i^2$$
,

который «...многие авторы считают наилучшей мерой оценки типа распределения видовых обилий для случаев, когда число видов превышает 10» (География и мониторинг.., 2002; Шитиков, Розенберг, 2005).

Наконец, укажем и на сравнительно новый для экологии подход к описанию структуры биологического сообщества с использованием фрактальной теории (см., например, Иудин др., 2003; Гелашвили и др., 2006). В рамках описания сообщества мультифрактальным спектром, многие из известных индексов разнообразия находят свое единообразное описание. Введем моменты распределения особей по группам и выясним характер их асимптотического поведения при увеличении численности N:

$$D_q = \sum_{i=1}^{Z} p_i^q \approx N^{\tau(q)} \quad ,$$

где $-\infty \le q \le +\infty$ — называется *порядком момента*, а показатель $\tau(q)$ характеризует скорость изменения соответствующего момента при увеличении размера выборки. D_q называется *обобщенной размерностью Реньи* (Иудин и др., 2003). Тогда при q=2 получаем $D_2 = \ln D/\ln N$, где D — индекс Симпсона. «Местоположение» индекса Симпсона на мультифрактальном спектре соответствует сообществам с сильными доминантами (чем меньше абсцисса точек, тем сильнее доминирование), что согласуется с высказанным выше утверждением о том, что индекс Симпсона является хорошим индикатором доминирования малого числа видов.

Завершая эту небольшую заметку, которая предваряет перевод статьи Э. Симпсона, еще раз подчеркнем, что трудности в применении показателей разнообразия и оценке их качества заключаются как в сложном и комплексном характере самой интерпретируемой величины разнообразия (что измеряем?), так и в отсутствии какой-либо объективной шкалы отсчета, независимой от концепции, принятой исследователем на основе его субъективных (точнее, интуитивных) представлений (чем и как измеряем?). С «точки зрения» данной дефиниции — индекс Симпсона выглядит совсем неплохо: он ориентирован на вскрытие степени доминирования в сообществе и представляется достаточно корректным, так как является линейной комбинацией дисперсии удельных объемов групп.

СПИСОК ЛИТЕРАТУРЫ

Алимов А.Ф. Элементы теории функционирования водных экосистем. – СПб.: Наука, 2000. - 147 с.

Гелашвили Д.Б., Иудин Д.И., Розенберг Г.С. Фрактальная структура перколяционного кластера и пространственное распределение доминантных видов // Докл. Академии наук (ДАН). 2006. Т. 408. № 4. С. 560-563. — География и мониторинг биоразнообразия. М.: Издательство Научного и учебно-методического центра Моск. ун-та, 2002. 432 с. — **Гиляров А.М.** Мнимые и действительные проблемы биоразнообразия // Успехи соврем. биол. 1996. Т. 116, № 4. С. 493-506.

Иудин Д.**И.**, **Гелашвили** Д.**Б.**, **Розенберг** Г.С. Мультифрактальный анализ структуры биотических сообществ // Докл. Академии наук (ДАН). 2003. Т. 389. № 2. С. 279-282.

Лебедева Н.В., Дроздов Н.Н., Криволуцкий Д.А. Биоразнообразие и методы его оценки: Учебное пособие. М.: МГУ, 1999. 94 с.

Уиттекер Р. Сообщества и экосистемы. М.: Прогресс, 1980. 328 с.

Шитиков В.К., Розенберг Г.С. Оценка биоразнообразия: попытка формального обобщения // Количественные методы экологии и гидробиологии (сборник научных трудов, посвященный памяти А.И. Баканова). – Тольятти: СамНЦ РАН, 2005. – С. 91-129.

Convention on Biological Diversity of the IUCN. Rio de Janeiro: IUCN, 1992. 2 р. [Рус. пер.: Конвенция ООН о биологическом разнообразии // Конференция ООН по окружающей среде и развитии. (Рио-де-Жанейро, июнь 1992 года). Информационный обзор / Коптюг В.А. Новосибирск: СО РАН, 1993. С. 28-29].

Gini C. Measurement of inequality and incomes // The Economic Journal. 1921. V. 31. P. 124-126.

Pielou E.C. 2^k contingency tables in ecology // J. Theor. Biol. 1972. No 2. P. 337-352.

Whittaker R.H. Evolution and measurement of species diversity // Тахоп. 1972. V. 21. P. 213-251. [Рус. пер.: Уиттекер Р. Эволюция и измерение видового разнообразия // Антология экологии (Состав. и коммент. Розенберга Г.С.). Тольятти: ИЭВБ РАН, 2004. С. 297-330]. — Williams C.B. Patterns in the Balance of Nature and Related Problems in Quantitative Ecology. N.Y.: Acad. Press, 1964. 324 p.

Yule G.U. On sentence length as a statistical characteristic of style in prose with application to two cases of disputed authorship // Biometrika. 1938. V. 30. P. 363-390.

Поступила в редакцию 7 мая 2007 г.